
Are Your Cookies Telling Your Fortune?

An analysis of weak cookie secrets and OSINT

May 2018

Are Your Cookies Telling Your Fortune?

Table of Contents

1. Overview..3

2. What Is a "Cookie Secret"?...4

3. Gathering Potential Targets and Secrets...6

4. Cracking The Secrets..8

5. An Example of an Attack on Passport.js Using OpenID...12

6. An Example of an Attack on Passport.js Using Local Authentication...18

7. Summary & Recommendations...22

8. References..23

9. Appendix..24

9.1. Shodan CSV to JSON Script...24

9.2. Modifcations to app.js...25

9.3. Contents of new_cookie.json...26

www.digitalinterruption.com Public Page 2 of 26

Are Your Cookies Telling Your Fortune?

1. Overview

With the exponential growth the web has witnessed in the last decade, both in terms of services

and technical sophistication, many new technologies have come to the aid of developers in order

to develop better products, more efciently.

As new libraries and frameworks begin to gain momentum and establish themselves as the new

de-facto standards, experienced and new developers alike, will frequently need to revisit "the

basics".

One such example, and the focus of this paper, is the use of sessions to introduce a persistent

state over HTTP. Although securing a session can be done with ease, it is not uncommon to fnd

educational material or public forums which fail to explain the importance of using unique and

strong session secrets.

This paper aims to provide an analysis of Node.js applications, using information gathered solely

through open-source intelligence, as to whether developers are following the best practises, as well

as the trends in those that have not.

In particular, the target of the analysis will be Node.js applications that have been built using the

cookie-session middleware. As of May, 2018, the cookie-session package had been downloaded

an average of 205,000 times per month [1]; indicating its usage is quite wide spread.

www.digitalinterruption.com Public Page 3 of 26

Are Your Cookies Telling Your Fortune?

2. What Is a "Cookie Secret"?

First and foremost, it's important to understand the problem that signed cookies attempt to (and

for the most part) solve.

Cookies have traditionally been something developers have avoided, if the integrity of the data to

be stored must be maintained. The reason for this, is that cookies are sent to the server as plain-

text HTTP headers; meaning a malicious actor can edit them with ease.

In the code seen in illustration 1, the server will check if the isAdmin cookie equals true, and if so,

will assume the user is indeed an admin. Bypassing this check would be as trivial as an attacker

including "Cookie: isAdmin=true" in the HTTP request.

The solution to this problem, is to "sign" the cookies when sending them to the client and verify the

signature when they are sent back from the client in subsequent requests.

www.digitalinterruption.com Public Page 4 of 26

Illustration 1: An example of an insecure use of cookies

Are Your Cookies Telling Your Fortune?

The signing process consists of taking the data being sent in the cookie and then using a hashing

algorithm to hash a combination of the data and the secret. If the hash generated by the server

matches the one sent by the client, then the server can be [relatively] confdent that the cookie has

not been tampered with.

Should an attacker be able to guess the secret, or acquire it, the integrity of the entire process is

voided, as they would be capable of generating valid signatures by following the same signature

signing process as the server they are attacking.

www.digitalinterruption.com Public Page 5 of 26

Are Your Cookies Telling Your Fortune?

3. Gathering Potential Targets and Secrets

Web applications that make use of the cookie-session middleware use a consistent naming

convention for the session cookie's signature. When initialising the middleware, one of the options

is an optional cookie name, which defaults to "session".

Once a session is initialised and the cookie is sent to the user, an additional cookie containing the

signature will be sent. The signature cookie will be named "{name}.sig", where {name} is the name

specifed during initialisation.

With this naming convention in mind, searching Shodan for "session.sig" returned 8,190 hosts that

were, seemingly, sending signature cookies generated by the cookie-session middleware. The

results of this search were subsequently exported to a JSON fle for a more in depth analysis later.

The next set of data that needed to be collected, in order to perform the analysis, was a list of

potential secrets. Using open-source intelligence, a list was compiled, containing 289 unique

secrets. One of the sources used, which yielded a large amount of the secrets, was GitHub.

Searching GitHub for the term "secret:", to fnd code that assigns a value to a property named

"secret", yielded 1,979,689 code results when fltered to JavaScript code. Across all languages,

there were over 20,000,000 results, but that number is to be taken lightly, as the syntax searched

www.digitalinterruption.com Public Page 6 of 26

Illustration 2: Search results on Shodan for the term "session.sig"

Are Your Cookies Telling Your Fortune?

for would be invalid in various other languages. For example, there were 1,644,563 results in HTML

code - but without some very unique design decisions, there would not be any secret defnitions

within HTML fles.

In addition to GitHub, a variety of online tutorials and project documentation, such as Express' best

practices guide [2], were used to gather more potential common secrets, which may have been

copied and pasted into production code, due to no emphasis being placed on the importance of

the secret's entropy.

www.digitalinterruption.com Public Page 7 of 26

Illustration 3: The GitHub search results; exposing plain-text secrets

Are Your Cookies Telling Your Fortune?

4. Cracking The Secrets

To aid in the testing of the hosts harvested from Shodan, a small utility was developed - Cookie

Monster [3]. Cookie Monster will take a JSON fle containing an array of objects that contain the

following pieces of data for a host:

• IP address

• Port number

• Session cookie data

• Session cookie signature

• The name of the session cookie

As the extract downloaded from Shodan was excessively verbose, and did not follow this format,

some preparation was required. The frst step in preparing the data was to use the Shodan

command-line interface [4] to parse the extract into a CSV fle, by running:

shodan parse --fields ip_str,port,data --separator '||' session.sig.json.gz
> servers.csv

Once in CSV format, the fle was processed into JSON, using the script found in section 9.1.

www.digitalinterruption.com Public Page 8 of 26

Illustration 4: The normalised Shodan data ready for use with Cookie Monster

Are Your Cookies Telling Your Fortune?

After launching Cookie Monster with the newly created fle in batch mode, a total of 62 cookies

were successfully found from a data set consisting of 8,186 samples.

www.digitalinterruption.com Public Page 9 of 26

Illustration 5: Cookie Monster successfully fnding various cookie secrets

Illustration 6: A sample of the results output by Cookie Monster

Are Your Cookies Telling Your Fortune?

The most common secret within the results was "secret", with a total of 45 instances, followed by

"keyboard cat" with 11 instances - both of which, are secrets that were found in a number of online

tutorials.

Of the 62 servers found to be vulnerable to cookie manipulation, 16 of those were utilising

Passport.js for authentication; identifed by the presence of the "passport" object in the cookie.

www.digitalinterruption.com Public Page 10 of 26

17.74%

4.84%

1.61%
1.61%
1.61%

72.58%

keyboard cat
mysecret
mySecretkey
productionSessionSecret
secret
secret key

Illustration 7: The secrets identifed by Cookie Monster

Illustration 8: A sample of a host utilising Passport.js

Are Your Cookies Telling Your Fortune?

Passport.js is authentication middleware for Node.js, providing a range of authentication

strategies, including Facebook, Twitter and Google authentication [5]. As these servers are using

Passport.js in combination with the cookie-session middleware, there is a signifcantly high chance

that they are vulnerable to an authentication bypass and potentially privilege escalation.

Due to the standardised schemas, if an attacker can be sure of which strategy is being used, they

would be able to either forge an entirely new cookie and impersonate other users / bypass

authentication, or alter an existing one.

In addition to Passport.js, other common objects found within the results were:

• CSRF tokens, believed to be generated by csurf [6]

• Flash messages, most likely generated by Express' Flash [7] middleware

Neither of these objects offer any value to a would-be attacker. The CSRF tokens are implemented

as a way of preventing an attacker automating an action on a user's behalf, meaning there is no

valid attack vector. The fash messages are generated by the server in order to be passed to the

client, not vice versa, meaning in most instances, any values within this cookie sent back to the

server are likely to be ignored.

www.digitalinterruption.com Public Page 11 of 26

Are Your Cookies Telling Your Fortune?

5. An Example of an Attack on Passport.js Using OpenID

To demonstrate how easily an attack of this nature can be carried out, an environment was setup

which simulated that of the vulnerable hosts we had identifed (i.e. using Passport.js as an

authentication method).

The Passport strategy used for the test lab was the Passport-Steam strategy, which allows users

registered with the Steam gaming platform to login using OpenID 2.0. The vendor of this strategy

provides an example project [8] which was used as the basis of the test.

Some minor modifcations were made to the app.js fle to introduce the use of the cookie-session

middleware. The specifc changes made to the fle can be found in the diff found in section 9.2.

Initially accessing the web application presents the user with two links - one to view their account

information, and one to login with. Should the user attempt to access the account information

without having a valid session, they will be redirected to the home page.

www.digitalinterruption.com Public Page 12 of 26

Illustration 9: The home page of the passport-steam example

Are Your Cookies Telling Your Fortune?

Clicking the "Sign On" link begins the authentication process, and redirects the user to the Steam

website, allowing them to login using their Steam credentials.

Should the credentials be entered correctly, the user will subsequently be redirected back to the

sample application's home page; where it is now possible to view the account details.

www.digitalinterruption.com Public Page 13 of 26

Illustration 10: The Steam login page

Illustration 11: The details of the Steam account used for authentication

Are Your Cookies Telling Your Fortune?

The ID number seen in illustration 11 is the public ID number of the Steam account that was used

to login with, which can be seen in the URL of the account's profle page.

As the ID numbers can be harvested publicly, it'd be possible to authenticate as any Steam user

without valid credentials, providing the cookie could be successfully modifed; emphasising, again,

the importance of strong secrets.

Examining the response of the request made after successful authentication will reveal that the

server sends the base64 encoded session cookie and signature back to the client.

www.digitalinterruption.com Public Page 14 of 26

Illustration 12: The Steam public ID being disclosed in the profle page

Illustration 13: The initialisation of the Passport.js session

Are Your Cookies Telling Your Fortune?

Decoding the value of session reveals all the data gathered from Steam that is used to identify the

user.

The data within the session cookie consists of:

• provider - the name of the provider / strategy used to authenticate.

• _json - a copy of the JSON data returned from Steam.

• id - the user's public steam ID.

• displayName - the display name used on Steam.

• photos - an array of the user's profle pictures / avatars.

• identifier - the open ID identifer URL for the user's account.

The property that is of particular interest within this cookie, is the id property. Modifying this, will

achieve the previously discussed goal of impersonating other Steam users, without the need for

the account credentials.

For the purposes of the test, the modifed contents of the decoded cookie were placed in a fle,

which can be found included in section 9.3; the modifcations made are highlighted in red.

After re-encoding the fle in the Decoder tab of Burp, the new base64 string was assigned as the

value of the session cookie in the Repeater tab. Upon executing the request, however, the response

code was 302, redirecting back to the home page; i.e. the behaviour previously witnessed if the

user tries to view the account details page without a valid session.

www.digitalinterruption.com Public Page 15 of 26

Illustration 14: The decoded session cookie

Are Your Cookies Telling Your Fortune?

Although the secret of the sample application is already known, in this instance, for further proof of

concept, the original session cookie and signature were processed with Cookie Monster to verify

the secret is identifed; confrming it to be "your secret".

www.digitalinterruption.com Public Page 16 of 26

Illustration 15: The server redirecting the request after trying to modify the cookie without re-signing it

Illustration 16: Cookie Monster fnding the secret of the sample application

Are Your Cookies Telling Your Fortune?

Using the cookie secret and the fle containing the new cookie contents (not base64 encoded),

Cookie Monster could be used to create a new session cookie and signature.

Returning back to the Repeater tab of Burp - copying the cookies provided by Cookie Monster into

the request and executing it, results in the altered account details being displayed; proving that an

authentication bypass is possible.

www.digitalinterruption.com Public Page 17 of 26

Illustration 17: Cookie Monster providing a new session cookie and signing it

Illustration 18: A successful authentication bypass using the modifed cookie and signature

Are Your Cookies Telling Your Fortune?

6. An Example of an Attack on Passport.js Using Local

Authentication

A common implementation of Passport.js is to not only offer OpenID strategies, but to also allow

users to register and login using a local authentication strategy. A local strategy is one which acts

like a traditional authentication system; by handling the data within the local system.

When using local authentication, the developer has complete control over the verbosity level of the

data stored within the cookie. Ultimately, they will still be required to store some form of identifer,

which with knowledge of the cookie signing secret, can be manipulated just the same as when

OpenID is used.

For this example, a small Express application was written which has two users – user1 and user2.

Upon logging in as user1, the session and session.sid cookies are created and sent back to the

browser; as was seen in section 5.

Decoding the session cookie in the Decoder tab of Burp reveals that this particular implementation

of the local strategy stores the user’s ID number in the passport object.

www.digitalinterruption.com Public Page 18 of 26

Illustration 19: The initialisation of the session after logging in

Are Your Cookies Telling Your Fortune?

Using Cookie Monster with the session and session.sid cookies returned by the Express instance,

it is possible to recover the secret.

Once the cookie signing secret is known, it is once again possible to create a new session cookie

and sign it; fooling the server into believing it is legitimate.

As the passport object in the session cookie has one property [user] which stores the user ID, the

contents of the new cookie need only change the ID from 1 to 2. Once the change to the

unencoded cookie is made and stored into a new fle (in this case, new.cookie), Cookie Monster

can be used to encode and sign it.

www.digitalinterruption.com Public Page 19 of 26

Illustration 20: The decoded session cookie

Illustration 21: Cookie Monster recovering the cookie signing secret

Are Your Cookies Telling Your Fortune?

After setting the session and session.sig cookies to the new values generated by Cookie Monster,

accessing the profle page now provides access to the user2 account and confrms an

authentication bypass.

www.digitalinterruption.com Public Page 20 of 26

Illustration 23: Cookie Monster encoding and signing the new cookie

Illustration 22: The unencoded contents of the new session cookie

Are Your Cookies Telling Your Fortune?

Using the form on the profle page, it is possible to update the stored value of the associated name.

To verify that any actions carried out with the modifed cookie will persist into the back-end, the

value “Manipulated Data” was entered into the “New Name” input box and submitted.

After logging out and logging back in as user2, the new name is displayed, confrming that full

control of the account was acquired.

www.digitalinterruption.com Public Page 21 of 26

Illustration 24: Accessing the user2 profle after an authentication bypass

Illustration 25: The user data confrmed as being persistently modifed

Are Your Cookies Telling Your Fortune?

7. Summary & Recommendations

Of the 8,186 samples tested, 62 (0.76%) were successfully cracked using the list of secrets

gathered using open-source intelligence. This low fgure suggests that, at minimum, the hosts

tested are for the most part avoiding reusing common secrets.

One of the more alarming fndings, throughout the information gathering stage, was how many

projects are publicly publishing secrets on the likes of GitHub. As well as a secret utilising a high

level of entropy, it's equally as important that the secret not be leaked.

In order to publish source code publicly and still retain the ability to use signed cookies without

compromise, the following steps should be taken:

• Store secrets in either a confguration fle or in environment variables

• Don't include default secret values, instead, force the user to set them up during installation

• Re-confgure any systems that have had their secret shared on GitHub in the past

(committing a new version with it removed does not remove the history stored within Git!)

www.digitalinterruption.com Public Page 22 of 26

Are Your Cookies Telling Your Fortune?

8. References

1: npm, cookie-session npm package, 2018, https://www.npmjs.com/package/cookie-session

2: Express, Production Best Practices: Security, 2018, https://expressjs.com/en/advanced/best-

practice-security.html#use-cookies-securely

3: Digital Interruption, Cookie Monster, 2018, https://github.com/DigitalInterruption/cookie-monster

4: Shodan, Shodan Command-Line Interface, 2018, https://cli.shodan.io/

5: Passport.js, Passport.js, 2018, http://www.passportjs.org/

6: Express.js, GitHub - expressjs/csurf: CSRF token middleware, 2018,

https://github.com/expressjs/csurf

7: Express.js, GitHub - expressjs/fash, 2018, https://github.com/expressjs/fash

8: Liam Curry, passport-steam/examples/signon at

bf2c3cca044a7aa174182b51fede9f72f147012e · liamcurry/passport-steam, 2018,

https://github.com/liamcurry/passport-steam/tree/bf2c3cca044a7aa174182b51fede9f72f147012

e/examples/signon

www.digitalinterruption.com Public Page 23 of 26

Are Your Cookies Telling Your Fortune?

9. Appendix

9.1. Shodan CSV to JSON Script

const csv = require('csvtojson')

let servers = []
csv({ noheader: true, delimiter: '||', ignoreEmpty: true })
 .fromFile('servers.csv')
 .on('json', s => {
 let pattern = /session\.sig=(.+?);/
 let sig = pattern.exec(s.field3)[1]
 let data = /session=(.+?);/.exec(s.field3)[1]

 servers.push({
 ip: s.field1,
 port: s.field2,
 data: data,
 sig: sig
 })
 })
 .on('done', error => {
 fs.writeFile('servers.json', JSON.stringify(servers), 'utf8', function
(error) {
 if (!error) {
 console.log('Exported to servers.json')
 }
 })
 })

www.digitalinterruption.com Public Page 24 of 26

Are Your Cookies Telling Your Fortune?

9.2. Modifications to app.js

diff --git a/app.orig.js b/app.js
index b0182d9..0ac3643 100644
--- a/app.orig.js
+++ b/app.js
@@ -4,8 +4,8 @@
 var express = require('express')
 , passport = require('passport')
 , util = require('util')
- , session = require('express-session')
- , SteamStrategy = require('../../').Strategy;
+ , session = require('cookie-session')
+ , SteamStrategy = require('passport-steam').Strategy;

 // Passport session setup.
 // To support persistent login sessions, Passport needs to be able to
@@ -52,10 +52,8 @@ app.set('views', __dirname + '/views');
 app.set('view engine', 'ejs');

 app.use(session({
- secret: 'your secret',
- name: 'name of session id',
- resave: true,
- saveUninitialized: true}));
+ secret: 'your secret'
+ }));

 // Initialize Passport! Also use passport.session() middleware, to
support
 // persistent login sessions (recommended).

www.digitalinterruption.com Public Page 25 of 26

Are Your Cookies Telling Your Fortune?

9.3. Contents of new_cookie.json

{
 "passport": {
 "user": {
 "provider": "steam",
 "_json": {
 "steamid": "76561198833340126",
 "communityvisibilitystate": 3,
 "profilestate": 1,
 "personaname": "Rob @ Digital Interruption",
 "profileurl":
"https://steamcommunity.com/profiles/76561198833340126/",
 "avatar":
"https://steamcdn-a.akamaihd.net/steamcommunity/public/images/avatars/fe/
fef49e7fa7e1997310d705b2a6158ff8dc1cdfeb.jpg",
 "avatarmedium":
"https://steamcdn-a.akamaihd.net/steamcommunity/public/images/avatars/fe/
fef49e7fa7e1997310d705b2a6158ff8dc1cdfeb_medium.jpg",
 "avatarfull":
"https://steamcdn-a.akamaihd.net/steamcommunity/public/images/avatars/fe/
fef49e7fa7e1997310d705b2a6158ff8dc1cdfeb_full.jpg",
 "personastate": 0,
 "primaryclanid": "103582791429521408",
 "timecreated": 1525104456,
 "personastateflags": 0
 },
 "id": "8675309",
 "displayName": "Jenny",
 "photos": [
 {
 "value":
"https://steamcdn-a.akamaihd.net/steamcommunity/public/images/avatars/fe/
fef49e7fa7e1997310d705b2a6158ff8dc1cdfeb.jpg"
 },
 {
 "value":
"https://steamcdn-a.akamaihd.net/steamcommunity/public/images/avatars/fe/
fef49e7fa7e1997310d705b2a6158ff8dc1cdfeb_medium.jpg"
 },
 {
 "value":
"https://steamcdn-a.akamaihd.net/steamcommunity/public/images/avatars/fe/
fef49e7fa7e1997310d705b2a6158ff8dc1cdfeb_full.jpg"
 }
],
 "identifier":
"https://steamcommunity.com/openid/id/76561198833340126"
 }
 }
}

www.digitalinterruption.com Public Page 26 of 26

	1. Overview
	2. What Is a "Cookie Secret"?
	3. Gathering Potential Targets and Secrets
	4. Cracking The Secrets
	5. An Example of an Attack on Passport.js Using OpenID
	6. An Example of an Attack on Passport.js Using Local Authentication
	7. Summary & Recommendations
	8. References
	9. Appendix
	9.1. Shodan CSV to JSON Script
	9.2. Modifications to app.js
	9.3. Contents of new_cookie.json

